首页> 外文OA文献 >Transductive Multi-label Zero-shot Learning
【2h】

Transductive Multi-label Zero-shot Learning

机译:转换多标签零射击学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Zero-shot learning has received increasing interest as a means to alleviatethe often prohibitive expense of annotating training data for large scalerecognition problems. These methods have achieved great success via learningintermediate semantic representations in the form of attributes and morerecently, semantic word vectors. However, they have thus far been constrainedto the single-label case, in contrast to the growing popularity and importanceof more realistic multi-label data. In this paper, for the first time, weinvestigate and formalise a general framework for multi-label zero-shotlearning, addressing the unique challenge therein: how to exploit multi-labelcorrelation at test time with no training data for those classes? Inparticular, we propose (1) a multi-output deep regression model to project animage into a semantic word space, which explicitly exploits the correlations inthe intermediate semantic layer of word vectors; (2) a novel zero-shot learningalgorithm for multi-label data that exploits the unique compositionalityproperty of semantic word vector representations; and (3) a transductivelearning strategy to enable the regression model learned from seen classes togeneralise well to unseen classes. Our zero-shot learning experiments on anumber of standard multi-label datasets demonstrate that our method outperformsa variety of baselines.
机译:零镜头学习作为减轻大规模识别问题注释训练数据的通常令人望而却步的手段而受到越来越多的关注。通过学习中间形式的属性和最近出现的语义词向量的语义表示,这些方法取得了巨大的成功。然而,与更现实的多标签数据的日益普及和重要性形成鲜明对比的是,它们迄今为止仅限于单标签情况。在本文中,我们首次研究并正式确定了多标签零弹学习的通用框架,以解决其中的独特挑战:如何在测试时利用多标签相关性,而没有针对这些课程的训练数据?特别是,我们提出(1)多输出深度回归模型,将图像投影到语义词空间中,该模型显式地利用了词向量中间语义层中的相关性; (2)一种新的用于多标签数据的零击学习算法,该算法利用了语义词向量表示法的独特组成性质; (3)一种跨语言学习策略,可以使从看到的班级学习的回归模型很好地概括为看不见的班级。我们在许多标准的多标签数据集上的零射学习实验表明,我们的方法优于各种基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号